Machinery diagnostics methodology

Duration

5 days (35 hours)

Delivery

Classroom or remote

Audience

- Engineers who interpret machine vibration and position data to determine machine condition
- Engineers involved in the design, acceptance testing, and maintenance of rotating machinery
- Engineers who want to learn about machinery vibration diagnostic

Objectives

- Explain how the fundamentals of machine design and behavior are reflected in the vibration measurements
- Reduce machine vibration data into usable plot formats. Explain which plot formats are best to use in the different stages of machine diagnostics
- Describe the causes, effects and indicators of the typical machine malfunctions; including recognition of problems such as unbalance, misalignment, rubs, shaft cracks and fluid induced instabilities

Program

Day1

- Introduction to Condition Monitoring and Diagnostics
- · How to interpret phase measurements
- How to interpret steady state data formats
- Fundamental synchronous rotor response

Day 2

- How to interpret Startup and shutdown plots
- Plot interpretation workshop
- Single plane balance response

Day 3

- Multiplane balance response
- How to detect and identify rubs and looseness

How to evaluate preloads and radial position measurements

Day 4

- Understanding different vibration types and resonances
- How to identify fluid induced instabilities
- · How to handle an isotropic systems

Day 5

- · How to detect and identify shaft cracks
- Knowledge review

